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ABSTRACT

A simplified version of the shock expansiontheory is

employed to estimate the unsteady aerodynamic load-

ing on a planar surface. Expressions for oscillatory

aerodynamic coefficients are developed for the case

of a three-degree-of-freedom airfoil section.
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SYMBOLS

b Local semichord

br Reference semichord

h Vertical deflection of the leading edge

k Reduced frequency

M Free stream Mach number

p(x, t) Aerodynamic pressure on surface

POO Free stream pressure

p (x, t) Net aerodynamic pressure on airfoil

qo0 Dynamic pressure

s Wing semispan

t Time

U o Free stream velocity

w(x, t) Vertical deflection of airfoil

x Chordwise coordinate

Xh Location of control surface hinge line

a Rotation of airfoil chord line relative to the free-stream
direction.

P Rotation of control surface relative to the airfoil chord line

6 Flow deflection angle

Time-dependent flow deflection angle

B Steady flow deflection angle
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SYMBOLS (Continued)

SPOO Free- stream density

0 Shock wave angle

W Circular frequency

Subscripts

c Conditions immediately downstream of shock wave at x = xh

h Conditions immediately upstream of shock wave at x xh

I Conditions on the lower surface of airfoil

n Conditions at the leading edge

u Conditions on the upper surface of airfoil
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I. INTRODUCTION

The two-dimensional shock expansion theory has been employed to

estimate the steady airloads on slender airfoils traveling at hypersonic

speeds (see, for example, Ref. 1). An unsteady version of this theory has
also been proposed for the determination of transient and oscillatory airloads,

on slender airfoils, in the hypersonic regime.

The unsteady theory may be developed from the hypersonic small dis-

turbance equations for unsteady flows (see Appendix A) or, if physical

arguments are employed, directly from the results of the steady flow theory.

The resulting formulae are rather complicated, but they may be simplified

when the time-dependent disturbances are small compared with the steady

disturbances. 2

The procedure developed in Ref. 2 is briefly outlined in the present

work, and expressions are developed for the pressure distribution in various

flow regimes of technical interest. These results then are employed to

determine aerodynamic coefficients for a two-dimensional airfoil oscillating

in the three degrees of freedom of plunging, pitching, and control surface

rotation. Some example calculations are carried out for a flat-plate airfoil.

The assumptions upon which the theory is based are noted in Appendix A.

The sign convention employed in this paper is as follows. The flutter

sign convention is used in the unsteady case: unsteady forces and deflections

are positive down; rotations are positive with the leading edge up. The aero-

dynamic sign convention is used in the steady case: steady forces and

deflections are positive up; rotations are positive with leading edge up.
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11. AERODYNAMIC THEORY

A simplified version of the shock expansion theory, developed in

Ref. 2, is employed to determine pressure distributions in flow regimes of

technical interest. Shock expansion flows, expansion flows, and flows

downstream of secondary shock waves are treated.

Shock Expansion Flow

Consider the hypersonic flow over the upper surface of the configuration

shown in Fig. 1. The surface slope at the leading edge is positive;therefore,

@I

Fig. 1. Coordinate system for slender surface
in a hypersonic flow.

the flow is compressed through an oblique shock wave. Conditions are

assumed to be such that the shock wave is attached. Assuming no appreciable

compressive turning of the flow downstream of this point, we find the approxi-

mate formula for the aerodynamic pressure on the upper surface to be

pI- + - (t*) 6(xt) 6n(t*)

-3



where 6(x, t) is the flow deflection angle at point x on the surface at the

time t. The quantities pn(t*) and M n(t*) denote, respectively, aerodynamic

pressure and Mach number immediately behind the leading edge shock wave,

evaluated at the time t* = t - x/Uc. The flow deflection angle at the leadi

edge is denoted by 6n. The pressure pn(t*) and Mach number Mn(t*) depend

upon the flow deflection angle at the leading edge, at time t*, and the free
stream conditions. They may be evaluated from the following formulae:

Pn = PoV + MPQoMo6[ (Za)

(-Y + 1) M4 2

M ~=~l~w + 11+ ~ 4 -MOJ. * (2b)

+ - M6I + l + I + (II)

where 0 denotes the angle that the leading edge shock wave makes with the

free-stream direction. These expressions are the approximate form of the

oblique shock wave relations, and they are developed under the assumption
that

sin 6n 6 , sin ;u , 62 I , M2 >> 2

Specializing to the case of small unsteady motions, we can simplify

Eq. (1) further. As in Ref. 2, the flow deflection angle 6(x,t) is written

6(x,t) = O(x) + f(k,t) with Ill << leI

"-4-



where e(x, t) denotes the time-dependent contribution. At the leading edge.

the flow deflection angle is

6=0+

n n n

The aerodynamic pressure and Mach number at the leading edge are expanded

about their respective steady values j and V . Retaining first-order termsn a
in theme expansions gives

Pn(t) = •( 1 + Tn(t)] , (3a)

Mn(t) = 1 + mn(t)] , (3b)

where -n and m are the dimensionless rates of change of pressure and Mach

number with turning angle.

The expression for -n and m are obtained from the oblique shock wave

relations:

ZY(Y + I)M (M 3

[zY(M OD) z - (Y- 1) [(M COO) z +

m - (Y+l)(M000 (4b)F ON 00-0 +2 1I[(MODO) + 11

Equations (3) are now substituted into Eq. (1) and terms of 1 are neglected

so that

p(x,t) = phti + ?len(t*)JI1�)][, 1&(X) + I(x,t) + .n(t*)[(mA(X)- 11il
(5



where x) = Blx) - Bn. Equation (5) may be expanded if we assume further
that

AWx + » j> I (x, t) + i,(t*)[ malx)- j

Neglecting terms of e2 and higher in this expansion, we obtain the following

relationship:

p~x, t) =n Y/Y 1) 1X]Z '- ) ,(a

p t '[,(x)) + Il(Elx(t*) + [ (xut) + En(t*) [m&(x)

(6)
whe re

F (X) =1 + A~1T(X) *

when Eq. (6) is split into time -dependent and time -independent parts

p'(x,t) and "j(x), the respective contributions are seen to be

,• lX) = -5~n[ Fl, I (x+)/2y (y-l1) (7a)p (x, t) = 1 (X) *(X,t) +~ 2 (x) 4 (t*) (7b)

where

W21x) = (x) ti + m]A(x) - Iii (7d)

• -6-



The quantities n and V n are obtained from Eqs. (2) by replacing 6n

with 0

Expansion Flow

In the case that the surface slope at the leading edge is negative, an

expansion immediately takes place. Assuming no appreciable compressive

turning of the flow downstream of the leading edge, we find that the approxi-

mate formula for the aerodynamic pressure on the upper surface is

p(x,t) - p0 1 + Y-iMC(x,t)1 Zi/(y-1) (8)

The flow deflection angle is written as

6(x,t) = O(x) + O(x,t) , with I i<<«181

and it is assumed that

M E(X t)
2 Co@X)0

Equation (8) is expanded and terms of order E2 and higher neglected so that

S1 M O(x, t) 1
p(x,t) = pOD[F 2 (x)]2'1'[l + 2 j 1()

where

F2 (X) = 1 + Y- 2 .M09(x)

-7-



0
Equation (9) may be split into time-dependent and time-independent parts

p'(xt) and f(x), respectively, where

R(x) = poolF 2 (2 )] Y(l- I (10)

p'(xt) - 53(x) 4(x.t) 0 (lOb)

and where

'33(x) = YpooM (F (x)](Y+)(Y 1) (11)

Downstream Flows

Modification of the previous analysis is necessary if the unsteady aero-

dynamic pressures downstream of a second shock wave are required. Such
a situation arises, for example, in the determination of the aerodynamic
pressures on the compression side of a deflected control surface. The

difference in the analysis arises from the fact that the flow conditions

upstream of the shock wave are now unsteady.

The expression for the surface aerodynamic pressure in such a flow is

derived under the assumption that the surface downstream of the shock wave

has negligible curvature. Two types of upstream flow are considered,

namely, a shock expansion flow and an expansion flow. The analysis pro-

ceeds under the assumption of small unsteady motions, and, since the

development is similar to that of the preceding sections, only the major

results are presented.

Consider that the oblique shock wave originates from the point xh on

the upper surface. The aerodynamic pressure Pc and Mach number Mc

immediately behind this shock wave are given by Eqs. (2) with p , Me'o,

and 6 n replaced by ph' Mh, hh, and 6h, respectively; where Ph and Mh

1 4- 0



~~~~~~~Y . . . I J 4 [ 11 I J

denote the aerodynamic pressure and Mach number immediately upstrejM

of the shock wave at xh, and where Oh and 6 h denote the shock wave angle

and flow deflection angle, respectively, both angles being measured from

the flow direction immediately upstream of the shock wave. The plossure

distribution farther downstream of the shock wave is detormined from shock

expansion theory. These results may be simplified for the case of small

unsteady motions by expanding the various quantities about their respective

steady flow values. When this procedure is carried through, the following

expression is obtained for the aerodynamic pressure on the surface down-

stream of the shock wave:

p(x,t) -= (x) + p'(x.t) , (x > xh)

where

i(x) = , (Iza)

p'(x,t) - -'ph]hCiF3(tV) + C 0Pj(t) + 1YPhtMcO04'x,t) c Ec~t)J . (lZb)

F PV~ = 'tV- #h(tV) "tvt~)

and where

C0= rYh'h( + iThTh + Fr4 )

0 i0I IVF nln F 4-4

Il + IVh~ + IN U. )~ + F4/

F4 =[ (4J)uhhlI



The barred quantities denote steady flow values. The unsteady aerodynamic

pressure immediately upstream of the shock wave at xh is denoted by Ip,

and the unsteady contribution to the flow deflection angle immediately down-

stream of this shock wave is denoted by Ec. In the above formulae both of

these quantities are evaluated at the time tt = t - (x - xh)/Uco.

The quantity v is determined from the first-order expansion of the

Mach number Mh about the steady flow value

Mh(t) = Zh[ 1 + v(t)]

The various terms appearing in Eq. (12) are dependent upon the flow condi-

tions upstream of the shock wave at xh. If these flows are specified, then

the equations can be reduced to a more explicit form. With a view to

technical applications, two particular upstream flows are considered, namely,

a shock expansion flow and an expansion flow.

Shock Expansion Flow Upstream

In this particular case, the analysis of the first portion of Section II

can be employed to determine and v(t). Substituting these results into

Eq. (12), we find the unsteady aerodynamic pressure to be

p'x~) 14 Ex) + c h5 ~~ + ~xhNu(%) + 5t(xjh)E~t* * (x > xh)

(13)
where

.%, 1Y~cCO (14a)

5 Yk~C 1 4(14b)

0
-10-



6(X) C C0 R(X) -Y1C[l + I FjhyJ (14c)

maw+h+. (14d)

The coefficients • 6 and *7 are evaluated immediately upstream of the

shock wave at xh.

The coefficients J1 (x) and A 2 (x) are defined by Eqs. (7c) and (7d),

respectively. The steady ilow aerodynamic pressure ph and Mach number

Uh immediately upstream of the shock wave are

Ph "ý n[F 1 (xj)jZV1 V (1 5a)

N' nIF 1(xýil1  
.(1 5b)

The steady flow Mach number 1Xc immediately downstream of the shock wave

is determined using the appropriate form of Eq. (2b). By means of the above

equations, the unsteady aerodynamic pressure downstream of the second

shock wave can be related to the undisturbed flow conditions and the surface

geometry.

Expansion Flow Upstream

In this particular case, the unsteady aerodynamic pressure is found
to be

p'(x, t) = G8 e(x,t) + 9 9 ,(tV) + S'l 0 ((Xh) 0(t9) (x> xh)

-11-



where

90 ) = - ipco (17a)

+ ~The coefficient •'0 is evaluated immediately upstream of the shock wave at

+ xh and the coefficient •' is defined by Eq. (11I). The aerodynamic pressure

i Ph and Mach number ]h are given as

t 1 = "PhI++(,ci)Iz'+I+" 11 8
•h~~ ~~~ = ooF2o•)l& ,h

3t! SOI[, +(17b)

j -12(0- 1 1b



MII. PRESSURE DISTRIBUTION ON AN AIRFOIL STRIP

The results of Section II are now employed to estimate the unsteady

aerodynamic loading on a two-dimensional airfoil strip. (Such an airfoil strip

is shown in Fig. 3a. ) The leading edge of the airfoil is located at x x 0, and

the control surface hinge line, at x a xh. The various loading cases have to

be distinguished depending upon the conditions at the airfoil. nose and at the

control surface. The four particular cases to be treated here are:

Case A Gnu > 0 Control surface deflected down

0 ni > 0

Case B Qnu > 0 Control surface deflected up

0ni >0

Case C 9 nu < 0 Control surface deflected downp.- > 0
Case D 0 nu < 0 Control surface deflected up

0n > 0

The additional subscripts u and I refer to the upper and lower surfaces

of the airfoil, respectively. Shock waves are assumed to originate only from

the leading edge and from the control surface hinge line. Expressions for the

net unsteady aerodynamic pressure acting upon the airfoil are listed for these

cases. These expressions are modified for the case of harmonic oscillations

and are simplified in the case that the reduced frequency of oscillation is

small.

If w(x, t) denotes the unsteady lateral motion of the airfoil strip, then

a (Xt) -e1(x,t)= - +w , (0 x .2b)u £ (uxuW13u



The net unsteady aerodynamic pressure p*(x,t) is defined as

p*(x,t) = Pu(X,0 - p1(x,t)

Small Unsteady Motions

The net unsteady pressure between the leading edge and the control

surface hinge line is

=-G m (x,t)- Gnci(0,t*) (0 < x < xh) (9

where m= 1, n= 2 for Cases Aand B; m" 11, n= 12 for Cases C and D.

The net unsteady pressure between the control surface hinge line and

the trailing edge of the airfoil is

"Po =-GI(x,t) - Gq4 1 (O't*) - Grl K(x.th) - Gs., (K. tg)

(xh < x < Zb) (20)

where

p = 3, q = 4, r = 5, s = 6, for Case A,

p= 7, q = 8, r = 9, s = 10, for Case B,

p = 13, q= 14, r = 5, s = 6, for Case C,

p = 15, q = 12, r = 16, s = 17, for Case D.

Explicit expressions for the coefficients Gm are given in Appendix B. The

argument x% indicates that the limiting function value as x -xh from above

is to be employed, and the argument x1 indicates that the limiting function

value as x -xh from below is to be employed.

-14-



Small Harmonic Motions

When the airfoil strip performs harmonic oscillations of frequency w,

the unsteady displacement may be written

w(K, t) - W(x)exp(i*t)

Therefore

I U(xt) = -j(X, t) = -T(x)exp(iwt) ,

where

Sik _b

*V(x) b ---

and where b denotes the semichord of the airfoil strip.

The expressions for p*(x, t) corresponding to the case of harmonic

oscillations may be obtained directly from Eqs. (19) and (Z0) by direct

substitution for a .

Low-Frequency Oscillations

If the reduced frequency of oscillation k is sufficiently small, the

exponential terms of argument -ikx/b and -ik(x - xh)/b which appear in the

expressions for p*(x,t) may be approximated by power series expansions.

If terms of order k3 and higher are neglected, then the expressions for the net

unsteady aerodynamic pressure are found to be

m- [n1 xb 0 2

(O<x<xh) , (21)

-15-



-G 7 (x) - G11V"0 1 (k +k 3  WO) ixkG ik+k -x + [,- .x xh i

(xh <x <2b) , (2Z)

where p*(x, t) = '*exp(iwt). The various loading cases are distinguished by

the subscripts m, n, p, q, r, a. These subscripts are assigned as before.

16
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IV. OSCILLATORY AERODYNAMIC COEFFICIENTS

When the airfoil strip has specified degrees of freedom, it is possible

to define aerodynamic coefficients. In the case to be considered, the airfoil

is assumed to have a rigid chord and a rigid control surface. The airfoil

motion may, therefore, be described by:

1. The vertical displacement of the leading edge,

2. The rotation of the airfoil strip about the leading edge,

3. The rotation of the control surface about the hinge line

(relative to the airfoil chord).

Considering harmonic oscillations, we obtain

w(xt) = W(x)exp(iwt) = [h + ax + P(x - xh)1(x - xh)]exp(iwt) , (23)

twhere 1(x) denotes the unit step function.

The oscillatory aerodynamic coefficients Lh, La, LP, Mh, Ma, Mp,
Th, Ta, and T are defined as follows:

L= 4p cw2b3 (Lh h-+ L~a + L,)exp(iwt) (24a)

M po 2 b 4(Mh h +MaL+ MpP)exp(iwt) (24b)b abM(4h•+Ma. ,

T= 4P w2b4(Th + T a+ TP)exp(iwt) (24c)

where L, M, T denote lift, moment about the leading edge, and moment

about the hinge line, respectively, generated on an airfoil strip of unit width.

-1?-



These quantities are related to the aerodynamic pressure p*(x, t) by the

following equations:

~2b
L -- p* dx , (25a)I SJo

M = xp* dx (25b)

T =f (x xhl)p* dx (25c)

xh

The oscillatory aerodynamic coefficients are determined when the appropriate

expression for p* is substituted into Eq. (25), the resulting equations inte-

grated and then identified with Eq. (24).

ror the remainder of the analysis, it will be assumed that the reduced

frequency of oscillation of the airfoil strip is small, so that

k2 << I

The approximate expressions (21) and (22), therefore, may be employed to

determine the aerodynamic coefficients. Substituting Eq. (23) for the down-

wash in these expressions, we arrive at

p*(xt) = -P [o H (mn) + aH 2(mn)]exp(iwit) (0 <x <xh) , (26)

p*(x, t -P Co [ H3 (pq, r, a) + aH4 (p,q, r, s) + PH5 (p, r)]exp(iwt)

(xh < x < Tb) (a d7)

The coefficients Hm are defined in Appendix B.

-1m'



These expressions are now substituted into Eqs. (25) and the resulting

equations are integrated. Comparison of these results with (24) shows that

the oscillatory aerodynamic coefficients are:

Lh = -p[[Kl(m,n) + K2 (p.qr,s)] (28a)

L 0 = -ýL[ K3 (m, n) + K 4 (p, q, r, s)] , (28b)

Lp = -RK 5(p, r) (28c)

Mh = -ý[K 6 (m,n) + K7 (p,q,r, a)] , (28d)

M 0 = -ti[ K8 (m,n) + K 9 (p,q, r, s)] , (28e)

Mp = -jKI0(p, r) (28f)

[K - (p, q,r, s) - --x- K?(p Iq, r, s ,(28g)
K Xh 1 (28h)

T Th= -K 7 (pq, r,s) -- !-K4(Pq, r, s (Z8,)

rT,= -R [K (p, r) Xh K5(p, r (Z~i)

where

PD1 2
Zqc PyMcp OD

-9 k-



Table 1. Oscillatory aerodynamic coefficients (Mco - 5);
flat-plate airfoil at zero angle of attack.

I/k Real [Lo] Imag. [ Lh] Real [La Imag. [lI] RI. No.

0.41667 0.00147 -0.08369 -0. 03463 -0.08321 3

0 -0. 08334 -0. 03472 -0. 08333

0.99206 -0.0035 -0.1965 -0. 19843 -0. 19557 3

0 -0.1984 -0.19684 -0. 19841

2. 08333 -0. 00715 -0. 4214 -0. 88295 -0. 40836 3

0 -0. 4167 -0. 86805 -0. 41667

4.96032 -0.00826 -1.0108 -5.01927 -0.97069 3

0 -0.9921 -4.92095 -0. 99206

14. 8810 -0.00848 -3. 0370 -45. 1986 -2. 9112 3

0 -2. 9762 -44. 2888 -2. 9762

II
1/k Real [Mh] Imag. [Mh] Real [Ma] Imag. [(.] Ref. No.

0.41667 0.0027 -0.08477 -0.03448 -0.11119 3

0 -0.08333 -0.03472 -0.11111

0.99206 -0.00347 -0.19389 -0. 19732 -0.26113 3

0 -0.19841 -0. 19684 -0.26455

2. 08333 -0.00917 -0. 41947 -0.88148 -0.54470 3

0 -0. 41667 -0.86805 -0.55555

4.96032 -0.01093 -1.0099 -5.0177 -1.29435 3

0 -0.99206 -4.9210 -1.32275

14.8810 -0.01130 -3.03667 -45. 197 -3.88152 3

0 -2. 9762 -44. 289 -3. 96826

-20-



The coefficients K are defined in Appendix B. They may be evaluated for

given airfoil profiles. The parameters m, n,p, q, r, s identify the various

airfoil and control surface orientations.

A numerical example will be carried out to illustrate the taeory. A

flat-plate airfoil will be treated. The reduced frequency of oscillation is

assumed to be small, and the low-frequency approximation is employed.

Numerical Example

Consider a two-dimensional flat-plate airfoil oscillating in two degrees

of freedom, namely, pitching and plunging. If the airfoil is at zero initial

angle of attack, then the nonlinear aerodynamic effects are absent and the

aerodynamic coefficients derived from this theory should agree closely with
3

those obtained from the linearized supersonic theory. The results of both

theories, for M O 5 and for various values of k, are shown in Table I.

The agreement between the two sets of aerodynamic coefficients is very good.

The small differences that do appear arise from the quasisteady nature of

the present theory together with the low-frequency and high Mach number

approximations employed.

When the airfoil is at an initial angle of attack, the developrrment of a

shock wave at the leading edge will affect the aerodynamic coefficients. The

magnitude of this effect is demonstrated by evaluating the aerodynamic

coefficients Lh, Mh , L, MQ for an oscillating flat-plate airfoil at a positive

initial angle of attack. The calculations are performed for a free-stream

Mach number of 5 and for M 0 , equal to 0.5, 0.9, 1.3, and 1.7. The results

of the calculation are shown in Figs. 2a, Zb, and 2c. The importance of this

nonlinear aerodynamic effect is immediately apparent from these figures.

The effect is significant even at values of M OD as low as 0.5.

I
I
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Fig. Za. Oscillatory aerodynamic coefficients.
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Fig. 2b. Oscillatory aerodynamic coefficients (continued).
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Fig. 2c. Oscillatory aerodynamic coefficients (continued).

-4j -24 -



V. OSCILLATORY AERODYNAMIC INFLUENCE COEFFICIENTS

In certain instances it may be convenient to describe the motion of the

airfoil strip in terms of displacements rather than in terms of angles and

displacements. The aerodynamic lift L, leading edge moment- M, and hinge

moment T are replaced by an equivalent system of aerodynamic forces. The

displacements jhj and equivalent aerodynamic forces JFJ are related by

means of oscillatory aerodynamic influence coefficients. The matrix (Ch]

of aerodynamic influence coefficients (AICs) is defined by the equationI fF1 = p.b[h]IhI , (P9)

where br is the reference semichord and s is the wing semispan. The aero-

dynamic influence coefficients can be obtained directly from the oscillatory

aerodynamic coefficients.

Consider the equivalent force system shown in Fig. 3b. The equivalent

forces are arbitrarily placed at the quarter-chord, control surface hinge line,

and trailing edge. The airfoil strip is assumed to be of unit width, and the

aerodynamic coefficients are defined as in the preceding section. The

relationship between the matrix of AICs and the aerodynamic coefficients can

be shown to be 4

(I + b/2d) -b/d {(b/ca)(3b/Zd - I)1

(ChI (4/s)(b/br)2 -b/Zd b/d -(b/ca)(3b/Zd)

0 0 b/ca

Lh La L 1 1 + b/2d) -b/2d 0

XjMh M41 M131 -b/ d b/d 01

LTh Ta T.J L b/d -(b/d + b/ca) b/ca]
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where c a denotes the control surface chord and d is the distance between

the forward and aft control points.

L T
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APPENDIX A

A Particular Solution of the Hypersonic Small Disturbance

Equations for Two-Dimensional Unsteady Flow

Consider the small transverse motions of a two-dimensional, slender,

pointed body immersed in a steady, uniform stream of a perfect gas

(see Fig. 1). The fluid is inviscid and does not conduct heat. An order of

magnitude analysis of the equations governing the disturbances introduced by

the presence of the body may be carried out under the assumption that

M >> 1 , r<< I , MT- 0(l) , k* -0(l) , (A-i)

where T is a measure of the slope of the body surface and where M denotes
the Mach number. The parameter k* = L/U ODT*, where T* is a character-

istic time associated with the time-dependent transverse motions and L is a

characteristic length in the streamwise direction, is a measure of the

unsteadiness of the flow. Introduction of the appropriate variables into the

equations of motion and neglect of the higher order terms leads to the field

equations of the hypersonic small disturbance theory:

Pt + U COPx + (pv)y = 0 (A-2a)

p(vt + UODv X ) vv)+ py = 0 (A-2b)

St + U0oSx +Sy = 0 (A-2c)

P(ut + UGOux + uux + vuy) + Px =0 (A-Zd)
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0
where S = p/pt. The pressure and density are denoted by p and p,

respectively. The perturbation velocities along the x and y axes are u and

v. The free stream velocity is denoted by U OD

The boundary condition on the body is

v(x, 0, t) = U 00Y x + Y t = UCO 6(x, t) ,(A-3)

where Y(x, t) defines the body surface. The disturbances are assumed to

vanish far ahead of the body. The changes in the flow conditions across

shock waves are governed by the appropriate jump conditions (see Re'f. 5).

Equations (A-2a), (A-2b), and (A-2c) can be solved independent of

Eq. (A-Zd), and these equations, together with the appropriate boundary

conditions, constitute the reduced hypersonic problem. A steady flow

problem, equivalent to this reduced hypersonic problem, may be constructed

by means of the following transformation:

.~ x= t - U-- ,(A-4a)

S = x ,(A-4b)

y =(A-4c)

The equations governing the equivalent steady problem are

u ?rsr + •T --. 0 ,(A-5a)

(UGO' + + 0y=O ,(A-Sb)
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ujý + 0 (A-5c)

where -

"V;CT) = p(X, t) , (A-6a)

PI•;X) = p(x, t) (A-6b)

7';?') = v(x,t) (A-6c)

The boundary condition on the body becomes

•(•;r=u0 = uojrZ') - ((A-7)

Assuming that the flow processes are isentropic in shock-free regions, we

may combine Eqs. (A-5) into the following form:

IU x

+ (•"+'). 8 .- (•)0 , (A-8b)

where

= + z2/(, -( )y
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Considering the upper surface of the body, we employ the following solution of

Eqs. (A-8) for a region r of isentropic flow.

F = constant along curves defined by dý d7= (•' + 'a): UGO

G = constant throughout the region r.

This choice of solution implies that the disturbances reflected back to the

body, which arise due to the presence of curved shock waves, are negligible.

The pressure distribution in r is, therefore,

. y/(y- l)
I V( )V

(n

where ~n' ,n' Tn are the conditions at some reference point in the region r.

The pressure distribution on that part of the body surface contained within

I +n[ ~ n~- 6 )~ (A -10)

If r is the region downstream of the bow shock (assumed to be attached to the

nose) and upstream of any successive shock waves emanating from the body,

then the reference point may be taken at the nose of the body and the conditions

M n determined from oblique shock theory. The solution for such a case,

when transformed back to the x, y, t coordinate system, is

Sp(x,,t) = pn~t*, + Y Mn(t*)L6(x,.t) - 6n(t*)]}l'/('1) (A-il)
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The quantities pn(t*), Mn(t*), 6 n(t*) denote the aerodynamic pressure,

Mach number, and flow deflection angle at the nose, respectively, evaluated

at the time t* = t - x/U C. In the case that there is no shock wave at the

nose, Eq. (A-1l) simplifies, and

p(x,t) =pooIi + .•-i M~o6(x, t)1]. (A-1l)
PX )= pIM(A - I Z)

The solution (A-I ) may be considered as the unsteady version of the shock

expansion formula for the case of two-dimensional hypersonic flows over

slender, pointed bodies a small angles of attack. To recapitulate briefly,

this result was developed under the assumptions that

1. The fluid is a perfect gas,

2. The effects of fluid viscosity and thermal conductivity are

negligible,

S3. The flow is such that

M >> 1 , T<< i , MT - 0(l) , k* - 0(l)

4. The fluid processes in shock-free regions are isentropic,

5. Disturbances reflected back to the body are negligible.

-
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APPENDIX B

Definition of Coefficients

Pressure Distribution on an Airfoil Strip

The coefficients 0 m appearing in Eqs. (19) through (22) are defined

as follows:

PooGlI = Stj lu + 11l 11

I poGz = 2u +•12,

PooG 3  lu •" 9141

cooG4 =•ilzu +-'60171

pO=G5  51 ,

PmG 6  I61I

PaoG7 = •I4u + 1111

t = •'7u + •zI

PODG9 = 9vs

POD l0 = "16u

P00G 1 13u + "Ill

pooG 12 2+

poo P 13 1!3u + •141I

PoG 14 1 71 1

p00 G15 =Su + 11I -i3
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PcoG 16= 9u

PcoG17 IOu

The additional subscripts u and I indicate that quantities are to be evaluated

on the upper and lower surfaces, respectively.

The coefficients Hm appearing in Eqs. (26) and (27) are defined as

follows:

HI(re, n) = ikGm+(ik+ k2 x] )Gn

H,(m,qn) = (I + ik )G + 1 - ik x-'k"() G

+ ik + ( G + ik +- k2(x )](Gr + G)H3(P, q, r, s) =ik G+ i+ - qr

H 4(P, q, r, a) =(I + ik x)G p+ [I-ik x k-2(X) 2]G

22
S+ I +~ik + •-ik) -2 (Gr + G '

H 5(p, r) 1 ik Gp + Gr [1+ik +• x2 ikh

tp k 2 x2
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Oscillatory Aerodynamic Coefficients

The coefficients Km appearing in Eqs. (28) are defined as follows:x0i
bKI(m, n)- Hi(m, n)dx

bK 2 (p. q, r, s) = 2h H 3 (p, q, r, s)dx

.xh

bK 3 (m, n) = fh H 2 (m, n)dx

2b
bK 4 (p, q, r, s) =j H 4 (p, q, r, s)dxt2b

SbKs(p, r) =fx H,(p, r)dx ,

2 2b

b 2 K7 (pq,'r,s) = xH3(13 (P'q,r,s)dx
xh

b2Ks(m, n) =0 xH-(m, n)dx

b 2 K9 (p, q, r, s) =f xH 4 (p, q, r, s)dx

b 2 K1 0 (p, r) f 2b xH 5 (p, r)dx

xh
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